目的 探讨KCa3.1通道对内皮祖细胞(endothelial progenitor cell, EPCs)生物学功能及分化的影响。方法 应用qRT-PCR 检测EPCs 上KCa3.1、vWF、CD31基因表达;采用CCK-8法、细胞贴壁法及Matrigel 基质胶分别检测细胞增殖、黏附及体外血管形成能力的变化;应用细胞免疫荧光、Western blot及流式细胞术分别检测KCa3.1通道蛋白、内皮分化标志vWF和CD31、整合素β1、β3的表达。结果 阻断KCa3.1功能或干扰KCa3.1的表达能够降低EPCs的增殖、黏附及血管形成能力,但是却可以促进EPCs向内皮分化;激活或过表达KCa3.1通道能够增强EPCs的增殖、黏附及血管形成能力,但是阻碍EPCs向内皮分化。阻断KCa3.1离子通道后,细胞膜整合素β1表达下调,而激活KCa3.1离子通道整合素β1表达上调。结论 KCa3.1通道功能变化及表达变化能够改变EPCs的生物学特性及向内皮分化水平。
Abstract
OBJECTIVE To investigate the effect of KCa3.1 channel on the function of EPCs. METHODS The gene expression of KCa3.1, vWF and CD31 on EPCs were detected by qRT-PCR. CCK-8 kit, cell adherent method and Matrigel were used to detect the changes of cell proliferation, adhesion and in vitro angiogenesis; cell immunofluorescence or fluorescence activated cell sorter(FACS) was used to detect the protein expression of KCa3.1, vWF, CD31, integrin β1, integrin β3 separately. RESULTS Blocking the function of KCa3.1 or interfering with the expression of KCa3.1 can attenuated EPC function of proliferation, adhesion and angiogenesis, but it can promote the differentiation of EPCs. Overexpression or activation of KCa3.1 channel can enhance EPCs proliferation, adhesion and angiogenesis but decrease the level of differentiation. The expression of integrin β1 on EPCs was attenuated with blocking KCa3.1 channel, but the expression effect was reversible by the activator. CONCLUSION The alteration of KCa3.1 channel function or expression affect the biological characteristics and differentiation of EPCs.
关键词
内皮祖细胞 /
KCa3.1通道 /
细胞功能 /
增殖 /
血管形成
{{custom_keyword}} /
Key words
endothelial progenitor cells /
KCa3.1 /
cell function /
proliferation /
tube formation
{{custom_keyword}} /
中图分类号:
R363
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] ASAHARA T, MUROHARA T, SULLIVAN A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science, 1997, 275(5302):964-967.
[2] TAYLOR D A, RESENDE M, SAMPAIO L C. Mobilizing EPCs:it is not just an acute issue. Int J Cardiol, 2018, 257:272-273.
[3] ZHANG L C, FAN W, BAO H F, et al. Neuroprotective role of statins in acute phase of ischemic stroke. Chin Pharm J(中国药学杂志), 2014,49(22):2018-2022.
[4] GARDOS G. The function of calcium in the potassium permeability of human erythrocytes. Biochim Biophys Acta, 1958, 30(3):653-654.
[5] CUI X, ZHANG X, GUAN X, et al. Shear stress augments the endothelial cell differentiation marker expression in late epcs by upregulating integrins. Biochem Biophys Res Commun, 2012, 425(2):419-425.
[6] TAO R, LAU C P, TSE H F, et al. Regulation of cell proliferation by intermediate-conductance Ca2+-activated potassium and volume-sensitive chloride channels in mouse mesenchymal stem cells. Am J Physiol Cell Physiol, 2008, 295(5):1409-1416.
[7] COLEMAN N, BROWN B M, OLIVAN-VIGUERA A, et al. New positive Ca2+-activated K+ channel gating modulators with selectivity for KCa3.1. Mol Pharmacol, 2014, 86(3):342-357.
[8] ADELMAN J P, MAYLIE J, SAH P. Small-conductance Ca2+-activated K+ channels:form and function. Annu Rev Physiol, 2012, 74(1):245-269.
[9] LI H, ZHAO J L, ZHANG Y M, et al. Inhibitoryeffects of candesartan on KCa3.1 potassium channel expression and cell culture and proliferation in peripheral blood CD4(+)T lymphocytes in kazakh patients with hypertension from the Xinjiang region. Clin Exp Hypertens, 2018,40(4):303-311.
[10] ANUMANTHAN G, GUPTA S, FINK M K, et al. KCa3.1 ion channel:a novel therapeutic target for corneal fibrosis. PLoS One, 2018, 13(3):e192145.
[11] BUSSE R, EDWARDS G, FELETOU M, et al. EDHF:bringing the concepts together. Trends Pharmacol Sci, 2002, 23(8):374-380.
[12] DENG X L. KCa3.1:a potential therapeutic target for cardiovascular disease. J Xi′an Jiaotong Univ(西安交通大学学报), 2013,34(2):139-143.
[13] LIU C, ZHAO F, LI Q Z. Biological function of integrin in cell adhesion. J Biol(生物学杂志), 2012,29(1):75-78.
[14] MA X L, LIU H Q. Effect of calcium on the proliferation and differentiation of murine corneal epithelial cells in vitro. Int J Ophthalmol, 2011, 4(3):247-249.
[15] YU Y. The biological role of Ca2+-activated K+ channel (KCa3.1) on hemodynamic induced cerebral aneurysm initiation mechanism. Shanghai:Second Milary Medical University, 2015.
[16] YANG H, LI X, LIU Y, et al. Crocinimproves the endothelial function regulated by KCa3.1 through ERK and Akt signaling pathways. Cell Physiol Biochem, 2018, 46(2):765-780.
[17] BONITO B, SAUTER D R, SCHWAB A, et al. KCa3.1 (IK) modulates pancreatic cancer cell migration, invasion and proliferation:anomalous effects on TRAM-34. Pflugers Arch, 2016, 468(11-12):1865-1875.
[18] SONG P, DU Y, SONG W, et al. KCa3.1 as an effective target for inhibition of growth and progression of intrahepatic cholangiocarcinoma. J Cancer, 2017, 8(9):1568-1578.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金项目资助(81700406,31570941,81870237);山东省自然科学基金项目资助(ZR2016CM20,ZR2014JL018,ZR2011CQ030);山东省高等学校科技计划项目资助(J15LK08);山东省医药卫生科技发展计划项目资助(2016WS0667);潍坊医学院大学生科技创新基金资助(KX2017016);潍坊医学院教师公派教师国内访学项目资助
{{custom_fund}}